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Abstract
Purpose – Metaheuristic algorithms have been commonly used as an optimisation tool in various fields.
However, optimisation of real-world problems has become increasingly challenging with to increase in system
complexity. This situation has become a pull factor to introduce an efficient metaheuristic. This study aims to
propose a novel sport-inspired algorithm based on a football playing style called tiki-taka.
Design/methodology/approach – The tiki-taka football style is characterised by short passing, player
positioning and maintaining possession. This style aims to dominate the ball possession and defeat
opponents using its tactical superiority. The proposed tiki-taka algorithm (TTA) simulates the short passing
and player positioning behaviour for optimisation. The algorithm was tested using 19 benchmark functions
and five engineering design problems. The performance of the proposed algorithm was compared with 11
other metaheuristics from sport-based, highly cited and recent algorithms.
Findings – The results showed that the TTA is extremely competitive, ranking first and second on 84% of
benchmark problems. The proposed algorithm performs best in two engineering design problems and ranks
second in the three remaining problems.
Originality/value – The originality of the proposed algorithm is the short passing strategy that exploits a
nearby player to move to a better position.
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Paper type Research paper

1. Introduction
Optimisation is a process of searching for a combination of variables to obtain the best solution
for a particular problem subjected to constraints. In most cases, the best solution is presented as
a minimum or maximum of the objective function. Optimisation is necessary in all aspects of
life for decision-making. However, most real-world problems are complex with numerous
nonlinear constraints. This situationmakes optimisation to become increasingly challenging.

A popular optimisation approach used to accurately overcome computational time
problems is known as a heuristic. This approach provides fast results but cannot ensure
optimality. A heuristic is a problem-dependent optimisation approach that is constructed to
solve a particular problem type. A heuristic called Greedy Approximation Algorithm was
proposed for the Knapsack problem that prioritises the item with the highest value per unit
mass (Akçay et al., 2006). Metaheuristics are another class of optimisation approach. Compared
with heuristics, which are applicable for a particular problem, metaheuristics are not limited to
a specific domain of problems. A metaheuristic is an iterative searching approach that is
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guided by predefined mechanisms/strategies to explore and find the optimal (or near-optimal)
solution in the search space. The popular metaheuristics are genetic algorithm (GA), ant colony
optimisation (ACO), simulated annealing (SA) and particle swarm optimisation (PSO) (Abdel-
Basset et al., 2018; Kennedy and Eberhart, 1995; Dorigo et al., 1996).

Previous researchers establishedmanymetaheuristic classifications. The first metaheuristic
classification consists of single-based and population-based solutions. Single-solution
metaheuristics such as SA and Tabu Search, start with one solution and improve it through
iterations. Metaheuristics are also classified into static and dynamic objective functions. The
objective function in most metaheuristics is consistent throughout the optimisation. However,
the objective function in metaheuristics such as Guided Local Search changes during iteration
to suit the searching condition. Metaheuristics can be categorised on the basis of memory usage
and memory-less techniques. Memory usage technique refers to the utilisation of historical
information for an algorithm to determine the next solution. Metaheuristics are also classified
into nature-inspired and non-nature-inspired. This classification is based on the original
concept of the manner an algorithm works. Nature-inspired metaheuristics are the active
cluster in metaheuristic research. The nature concept such as from animals, plants and physical
behaviour, is mathematically modelled as metaheuristics. By contrast, non-nature-inspired
metaheuristics are based on other concepts from daily activities.

Since 2015, many metaheuristic algorithms based on different inspirations have been
proposed. The largest metaheuristic category from 2015 to 2020 is the algorithm inspired by
animal or insect behaviour. The popular animal-based algorithms in terms of citation are Whale
Optimisation Algorithm (WOA), Ant Lion Optimiser (ALO) and Moth Flame Optimisation
(MFO) (Mirjalili and Lewis, 2016; Mirjalili, 2015a, 2015b). WOA is inspired by humpback whale
hunting method using bubble-net strategy. ALO is inspired by hunting behaviour for the insect
called antlions. MFOmimics themothflying nature in the presence of artificial light.

Other animal-inspired metaheuristics that attracted the attention of researchers include
Salp Swarm Algorithm (Mirjalili et al., 2017), Dragonfly Algorithm (Mirjalili, 2016),
Grasshopper Algorithm (Saremi et al., 2017), Lion Optimisation Algorithm (Yazdani and
Jolai, 2016), Social Spider Algorithm (Yu and Li, 2015), Elephant Herding Algorithm (Wang
et al., 2016), Bird Swarm Algorithm (Meng et al., 2016) and Spotted Hyena Optimiser
(Dhiman and Kumar, 2017). These metaheuristics were introduced from 2015 to 2018 and
obtained high publication citation. Few animal-based metaheuristics have been proposed in
2019 and early 2020. These metaheuristics include Harris Hawks Optimisation (HHO)
(Heidari et al., 2019), Butterfly Optimisation Algorithm (BOA) (Arora and Singh, 2019),
Squirrel Search Algorithm (Jain et al., 2019), Fitness Dependent Optimiser (FDO) (Abdullah
and Ahmed, 2019), Side-Blotched Lizard Algorithm (O. Maciel et al., 2020) and Pathfinder
Algorithm (PFA) (Yapici and Cetinkaya, 2019). Although these algorithms are relatively
new, they are widely used by researchers, especially HHO, BOA and PFA.

HHO is inspired by surprise pounce strategy of Harris hawks to chase the prey. Prior to
surprise pounce, it cooperatively besieges the prey to make it exhausted. BOA is based on the
foraging behaviour of butterflies seeking for flower source. The BOA implements a cooperative
movement, where every butterfly will emit fragrance to attract each other. The butterfly will
then fly towards the best fragrance and is affected by the search space landscape. PFAmimics
the cooperative movement of an animal group to find the food source or prey. A structured
leadership hierarchy is implemented to guide the search process.

The second most popular metaheuristics proposed between 2015–2020 are biological-
based algorithms. The metaheuristics that fall in this category are inspired by nature and
biological systems such as weather, water cycle, air system, human body and tree growth.
The popular algorithm in this category is Water Wave Optimisation (WWO) (Zheng, 2015).
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WWO mimics the shallow water wave concept consists of propagation, refraction and
breaking phases. Another popular biological-based metaheuristic is Lightning Search
Algorithm that is inspired by step leader propagation in lightning phenomenon (Shareef
et al., 2015). Other popular metaheuristics in this category are Virus Colony Search (Li et al.,
2016), Water Evaporation Optimisation (Kaveh and Bakhshpoori, 2016), Kidney-Inspired
Algorithm (Jaddi et al., 2017) and Color HarmonyAlgorithm (Zaeimi and Ghoddosian, 2020).

Physical-based metaheuristics are also a popular category among researchers from 2015
to 2020. Multi-Verse Optimiser (MVO) has the highest citation in this category (Mirjalili
et al., 2016). This algorithm is inspired by a cosmological concept that multiple universes
interact with each other via white hole, black hole and worm hole concepts. Heat Transfer
Search and Thermal Exchange Optimisation are algorithms inspired by thermodynamics
(Patel and Savsani, 2015; Kaveh and Dadras, 2017). These algorithms use the thermal
equilibrium concept in their mechanisms, where the thermal imbalance exists in the system
and its surrounding. Ideal gas optimisation is derived from thermodynamics and kinetics of
ideal gas law (Shams et al., 2017). In this algorithm, gas molecules with different pressures
and temperatures represent the candidate solutions. Atom Search Optimisation (ASO) is a
physical-based metaheuristic that mimics molecular dynamics (Zhao et al., 2019). The
solution is represented by atoms and measured by their masses, with the heavier atom
representing a better fitness. The solution reproduction is modelled on the basis of atomic
movements, where the heavy atommoves towards the light ones.

Apart from the abovementioned categories, metaheuristics inspired by sport activities,
especially football (or soccer) are another category. However, these metaheuristics have
received less attention compared with animal, biological and physical-based algorithms. To
date, several football-inspired algorithms have been published. A League Championship
Algorithm (LCA) based on the league system in sports team competition was proposed in
2009 (Kashan, 2009). In the LCA, the candidate solution is represented by a sports team and
the strategy formation represents the parameter values in the solution. The second football-
based metaheuristic is Football Optimisation Algorithm (FOA) (Hatamzadeh and
Khayyambashi, 2012). In the FOA, the players are ranked and selected in terms of fitness.
Soccer Game Optimisation (SGO) is another football-based algorithm inspired by soccer
player movement during the game (Purnomo and Wee, 2013). In SGO, the player represents
the candidate solution and the ball dribbler represents the best solution. Golden Ball
Algorithm (GBA) is another metaheuristic that simulates the concepts in a football game
(Osaba et al., 2013). In the GBA, a football tournament consists of several teams, where each
player represents the candidate solution. Each team works individually and competes with
one another to become the best.

Soccer League Optimisation (SLO) simulates the football league system in European
countries, where each country has several leagues with different club performance (Khaji,
2014). The wealthier team has a greater chance to sign a better player, whereas the poorer team
has the ability to purchase only young players. Football Game Algorithm (FGA) is another
football-based metaheuristic. This algorithm mimics the behaviour of football players to find
the best position in scoring a goal (Fadakar and Ebrahimi, 2016). The player in a better position
has a better chance to get the ball. World cup optimisation (WCO) is inspired by the
International Federation of Association Football (FIFA) tournament of national football teams
to reach the FIFA World Cup championship (Razmjooy et al., 2016). The new population is
established on the basis on the previous cup champion and ranking of teams.

The existing metaheuristics inspired by a football game can be divided into two groups.
The first group of metaheuristics such as GBA, SLO, LCA andWCO algorithms, mimics the
football league or championship system. These algorithms normally consider the overall
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team performance rather than individual fitness to obtain candidate solutions with better
average fitness. The second group, including SGO, FGA and FOA, simulates the football
game itself by modelling the player movement, ball position and substitutes. The
exploitation mechanisms in most algorithms clearly represent the actual football game,
including the player movement. Majority of these algorithms have applied substitution
strategy to enhance exploration. These algorithms only simulate a general football game
behaviour without implementing specific tactics. Different football playing styles such as
samba by the South American team and total football by the Dutch team, are used by
football teams. This study proposed a novel football-based algorithm that is inspired by a
football-playing style called tiki-taka. Apart from achieving high-quality result, the
challenge in the proposed metaheuristic is to balance the exploration and exploitation
capabilities throughout the optimisation (Dokeroglu et al., 2019).

2. Tiki-taka algorithm
2.1 Inspiration
Tiki-taka refers to a football playing style that is associated with the Spanish national team
and Barcelona football club (BCF). This playing style is characterised by short passing,
player movement and possession control. The tiki-taka approach allows a football team to
slowly build the attack movements from the defend position. This tactic was introduced by
Johan Cruyff and popularised by Pep Guardiola. The BCF won 14 out of 19 trophies from
2008 to 2012 by using this tactic (Hayward, 2015). Apart from that, the tiki-taka tactic also
led to the success of the Spanish national team in winning the Union of European Football
Associations (UEFA) football championship in 2008 (EURO 2008) under its manager, Luis
Aragonés and FIFAWorld Cup 2010 under its manager, Vicente del Bosque.

The tiki-taka style is contradicted by physical football that favours the physical strength,
running ability and man-mark ability of the opponent. In tiki-taka, few smart players are
needed to read the game, with quick movements and precise player positions. They are the
key players for the team who will determine the game pace. In the BCF, these players
include Lionel Messi, Andrés Iniesta and Xavi Hern�andez. During the game, players
consistently look for a chance to pass the ball to the key players for them to build the
attacking movements. Tiki-taka tactics aim to dominate the ball possession using tactical
superiority and fluidity to overcome opponents.

2.2 Mathematical formulation
Tiki-taka Algorithm (TTA) is inspired by two main characteristics in the tiki-taka tactic,
which are short passing and player movement. In a real game, players will form a triangle of
three players who will keep passing the ball among them. The players will form another
triangle by finding a better space when the opponents enter the triangle.

In the TTA, the short passing strategy is adopted, where the player (potential solution)
will pass the ball to the nearby player, as shown in Figure 1. The player will then find a
better position in accordance with the ball and key player positions. In the TTA, the concept
of multiple key players (leaders) is adopted, similar to the real tiki-taka strategy. The aim of
multiple leaders is to enhance solution divergence and avoid algorithm trapping in the local
optimum.

Figure 2 shows a flowchart of the proposed TTA. The algorithm begins by initializing
the player position and its parameters. The player position is evaluated by using a fitness
function. Next, the key players will be updated in accordance with their fitness level. The
algorithmwill update the ball position before the player position is updated.
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Figure 2.
Flowchart of the

TTA

Figure 1.
Short passing in tiki-

taka
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2.2.1 Initialisation. Consider a football team with n players. The player positions that
represent the possible solutions are randomly created with d dimensions within the bound
limit. At the same time, the number of key players, nk, is determined, which is
approximately 10% of the total players or a minimum of three key players. Apart from
simulating the real tiki-taka play, the concept of multiple key players (leading solutions) in
the TTA enables it to maintain the diversity because the candidate solution is influenced by
different leaders. Another matrix that represents ball position, B, is established. In this
algorithm, the ball position represents the vector that will guide the player movement in the
exploitation phase. Note that for initial solution,B= P:

P ¼

p1; 1 p1;2
p2; 1 p2;2

� � � p1;d
. . . p2;d

..

. ..
.

pn;1 pn;2

. .
. ..

.

. . . pn;d

0
BBBB@

1
CCCCA (1)

B ¼

b1;1 b1;2
b2;1 b2;2

� � � b1;d
. . . b2;d

..

. ..
.

bn;1 bn;2

. .
. ..

.

. . . bn;d

0
BBBB@

1
CCCCA (2)

The initial player position, P, is evaluated in accordance with the objective function. The top
nk players are updated in the key player archive, h. The key player archive will be updated
in every iteration and only contains the current values.

2.2.2 Update ball position. The basic characteristic of tiki-taka is short passing. The
proposed algorithm adopts this concept. The player will pass the ball to the next nearby
player. Although the successful passing rate in tiki-taka is high, losing the ball to the
opponent is possible. In this work, the probability to lose the ball (problose) is between 10%–
30% of the overall passes.

The new ball position, b
0
i , is expressed as:

b
0
i ¼

rand bi � biþ1ð Þ þ bi; rp > problose
bi � c1 þ randð Þ bi � biþ1ð Þ; rp# problose

�
(3)

where rp is a random number (0, 1). For a successful pass (rp > problose), the ball will be
passed to the nearest player, with some random factors. For an unsuccessful pass, the ball is
assumed to be blocked and delivered behind the player, as shown in equation (3). In this
equation, c1 is a coefficient that influences the ball reflection magnitude in the unsuccessful
pass. The term (bi – biþ1) represents the distance between the i-th ball position to the i-thþ1
ball. For the last ball position, bn, the term biþ1 is replaced with b1.

2.2.3 Update player position. After passing the ball, the player needs to move and find a
better position in the formation. In the tiki-taka tactic, the player movement is influenced by
the ball, key player and opponent player positions. However, this algorithm only considers
the key player position (h) and ball position, as shown in Figure 3. The selection of key
players for the updating process is random because the number of key players is more than
one. This strategy allows the algorithm to maintain its diversity because the player
movement is independent on a single best player’s position.
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The player updating procedure adopts the following formula:

p
0
i ¼ pi þ rand*c2* bi 0 � pið Þ þ rand*c3* h� pið Þ (4)

where h represents the key player’s position. c2 and c3 are the coefficients that balance the
player position between the ball and the key player. The updated player position is
evaluated and the key player position is updated in the archive.

The pseudocode of the TTA algorithm is presented as follows:

Procedure of TTA
Initialise TTA parameter

d = problem dimension
n = player number
m = maximum iteration
problost = probability of ball lost [0.1� 0.3]
c1, c3 = coefficients [0.5� 1.5],
c2 = coefficient [1.0� 2.5]

Generate initial player position, P = {pi, piþ1, piþ2,. . .,pn}
Evaluate initial player position, fp = f(p)
Save key players’ position, h
iter = 0
While iter< m

iter = iterþ 1
for i = 1 to n

Update ball position, B using equation (3)
end
for j = 1 to n

Update player position, P using equation (4)
end
Evaluate P’

fp = f(p’)
Update historical best position, h
End

The uniqueness of the proposed algorithm is the short passing mechanism for the
exploitation of the solution. In the TTA, the solution updating process is influenced by the
next nearby player andmultiple key players to guide the search direction.

To estimate the algorithm complexity, Big-O notation is used to show the highest order of
algorithm complexity in each step. The proposed TTA’s complexity relies on the number of
maximum iterations, m and the number of players (or population size), n. During the

Figure 3.
Update ball and
player positions
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initialisation stage, a loop dependent on n size is used to generate initial players and its
complexity is O(n). The algorithm’s complexity increases to O(m*n) when it enters the main
iteration loop for evaluation, update key player, update ball position and update player position
steps. The algorithm only involves a constant O(1) for termination. The highest Big-O order in
the main iteration loop is O(m*n). The population size in metaheuristic applications typically
ranges from 20 to 40. However, the maximum iteration can reach to hundred thousands,
indicating that n is relatively small compared withm. Therefore, the complexity of the TTA is
low because it linearly increases when the value ofm is large enough comparedwith n.

3. Results and discussion
Nineteen standard benchmark mathematical test functions with known global optima were
applied to test the performance of TTA (Suganthan, 2005; Liang et al., 2005). The test problems
were divided into three categories, namely, unimodal, multimodal and composite functions. All
the functions were tested with 50 dimensions. The unimodal test function consisted of F1 to F7,
as shown in Table 1. These functions were used to test the exploitation ability of the algorithm.
These functions had only one optimum solution, without local optimum.

The second category, known as multimodal, comprised six functions (F8 to F13), as
shown in Table 2. The multimodal functions contained multiple optimum solutions.
However, only one solution was the global optimum and the rest were local optima.
Therefore, these problems were more challenging compared with the unimodal function.
The multimodal problems were used to test the exploration ability of the proposed
algorithm. These problems were also used to test the ability of the proposed algorithm in
avoiding trapping in the local optimum.

The third category was the composite function, where the unimodal and multimodal
functions were modified by combining, rotating, biasing and shifting the original functions.
The composite function was used to test the balance between exploitation and exploration in
the algorithm for optimizing real problems. This condition was because the composite
function simulates the search space in real problems, with complex and large numbers of
local optimum. These functions were repeated until the desired number of dimensions was
achieved. The composite test function is presented in Table 3.

3.1 Effects of tiki-taka algorithm parameters
Four parameters, namely, c1: coefficient for ball reflection magnitude, c2: coefficient of ball
position, c3: coefficient of key player position and problost: probability of unsuccessful ball
pass, influenced the TTA performance. problost parameter function maintains the

Table 1.
Unimodal test
function

Test function Range

F1 xð Þ ¼Pd
i¼ 1 x

2
i (�100, 100)

F2 xð Þ ¼Pd
i¼ 1 jxij þ

Qd
i¼ 1

xijj (�10, 10)

F3 xð Þ ¼Pd
i¼ 1

Pi
j� 1 xj

� �2
(�100, 100)

F4 xð Þ ¼ maxi xij; 1# i # dj gf (�100, 100)

F5 xð Þ ¼Pd� 1
i¼ 1 100 xiþ 1 � x2i

� �2 þ xi � 1ð Þ2
h i

(�30, 30)

F6 xð Þ ¼Pd
i¼ 1 xi þ 0:5½ �ð Þ2 (�100, 100)

F7 xð Þ ¼Pn
i¼ 1 ix

4
i þ random 0; 1½ � (�1.28, 1.28)
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population diversity, where a specified percentage of the solution will undergo different ball
position updating procedures. c1 determines the reflection magnitude of unsuccessful ball
pass. High c1 coefficient results in far ball distance from the original position. This
mechanism will assist in maintaining the solution diversity for the entire iterations. c2 and c3
help balance the influence of ball and key player positions.

Table 3.
Composite test
function

Test function Range

F14 CF1ð Þ:
f1; f2; f3; . . . ; fd ¼ Sphere Function
s 1; s 2; s 3; . . . ; sd½ � ¼ 1; 1; 1; . . . ; 1½ �
l 1; l½ 2; l 3; . . . ; l d� ¼ ½ 5=100; 5=100; 5=100; . . . ; 5=100�

(�65.536, 65.536)

F15 CF2ð Þ:
f1; f2; f3; . . . ; fd ¼ Griewank0s Function
s 1; s 2; s 3; . . . ; sd½ � ¼ 1; 1; 1; . . . ; 1½ �
l 1; l 2; l 3; . . . ; l d½ � ¼ 5=100; 5=100; 5=100; . . . ; 5=100½ �

(�5, 5)

F16 CF3ð Þ:
f1; f2; f3; . . . ; fd ¼ Griewank0s Function
s 1; s 2; s 3; . . . ; sd½ � ¼ 1; 1; 1; . . . ; 1½ �
l 1; l 2; l 3; . . . ; l d½ � ¼ 1; 1; 1; . . . ; 1½ �

(�5, 5)

F17 CF4ð Þ:
f1; f2 ¼ Ackley0s Function
f3; f4 ¼ Rastrigin0s Function
f5; f6 ¼ Weierstrass0s Function
f7; f8 ¼ Griewank0s Function
f9; f10 ¼ Sphere Function
s 1; s 2; s 3; . . . ; s 10½ � ¼ 1; 1; 1; . . . ; 1½ �
l 1; l 2; l 3; . . . ; l 10½ � ¼ 5

32
;
5
32

; 1; 1;
5
0:5

;
5
0:5

;
5
100

;
5
100

;
5
100

;
5
100

� 


(�5, 5)

F18 CF5ð Þ:
f1; f2 ¼ Rastrigin’s Function
f3; f4 ¼ Weierstrass’s Function
f5; f6 ¼ Griewank’s Function
f7; f8 ¼ Ackley’s Function
f9; f10 ¼ Sphere Function
s 1; s 2; s½ 3; . . . ; s 10� ¼ 1; 1; 1; . . . ; 1½ �
l 1; l 2;½ l 3; . . . ; l 10� ¼ 1

5
;
1
5
;
5
0:5

;
5
0:5

;
5
100

;
5
100

;
5
32

;
5
32

;
5
100

;
5
100

� 


(–2, 2)

F19 CF6ð Þ:
f1; f2 ¼ Rastrigin’s Function
f3; f4 ¼ Weierstrass’s Function
f5; f6 ¼ Griewank’s Function
f7; f8 ¼ Ackley’s Function
f9; f10 ¼ Sphere Function
s 1; s 2; s 3; . . . ; s 10½ � ¼ 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0½ �
l 1; l 2; l 3; . . . ; l 10½ � ¼ 0:1*

1
5
; 0:2*

1
5
; 0:3*

5
0:5

; 0:4*
5
0:5

; 0:5*
5
100

; 0:6*
5
100

; 0:7*
5
32

; 0:8

�

*
5
32

; 0:9*
5
100

; 1*
5
100




(0, 1)
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A design of experiment based on Taguchi was constructed to identify the effects of these
parameters on the TTA’s performance. Each parameter was set to three levels, as shown in
Table 4 and L27 orthogonal array was used. The average rank obtained by each experiment
set was used as an output parameter for analysis. Figure 4 shows the main effect plot of
signal-to-noise ratio in the experiment.

As shown in Figure 4, c3 has the highest effect, followed by c2. The performance of TTA
is low when c3 is at a high level because of the high dependencies on the key player. This
condition causes the solutions to be trapped in the local optimum. problost poorly performs at
a high level because the solution becomes extremely diversified. This condition disrupts
the algorithm convergence because excessive solutions are randomly delivered far from the
original position. On the basis of the main effect plot for signal-to-noise ratio in Figure 4, the
optimum level for the TTA parameters are c1 = 1.2, c2 = 2.5, c3 = 1.0 and problost= 0.2.

3.2 Comparison of performance
The TTA’s performance to optimise the benchmark functions was compared with 11
metaheuristic algorithms through computational experiments. The comparison algorithms
used were mainly sport-based algorithms, including SLO, LCA, GBA and FGA (Kashan,
2009; Osaba et al., 2013; Fadakar and Ebrahimi, 2016). The TTA was also compared with
the popular swarm-based algorithm, PSO and a highly cited algorithm in the past five years,
MFO (Kennedy and Eberhart, 1995; Mirjalili, 2015a). The proposed TTA was compared
with the recent metaheuristics published in early 2019, namely, ASO (Zhao et al., 2019), BOA
(Arora and Singh, 2019), FDO (Abdullah and Ahmed, 2019), HHO (Heidari et al., 2019) and
PFA (Yapici and Cetinkaya, 2019). In the experiment, all algorithms used 30 search agents

Table 4.
Parameter levels for

taguchi design

Level c1 c2 c3 problost

Low 0.8 1.5 0.5 0.1
Medium 1.2 2.0 1.0 0.2
High 1.5 2.5 1.5 0.3

Figure 4.
Main effect plot of

signal-to-noise ratios

Tiki-taka
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and 1,000 iterations. The optimisation was repeated for 30 times to reduce the pseudo-
random effect in the solution.

A statistical test was then conducted to test the significance of the results obtained by
TTA compared with the comparison algorithms. A nonparametric test was chosen because
the results (i.e. best fitness) obtained from optimisation did not have a normal distribution.
For this purpose, aWilcoxon-signed rank test was conducted for each set of results. The null
hypothesis in this test was that the median of the two samples are equal. The null
hypothesis is accepted when the p-value is larger than the significance level (0.05) and vice
versa. In this case, the null hypothesis was rejected because it showed that a significant
difference was found between the TTA and comparison algorithm results.

Table 5 shows the mean and standard deviation of fitness for benchmark test problems.
The underlined data represent the best mean for a particular test function. On the basis of the
results for unimodal test problem, the TTA outperformed other algorithms in five out of seven
problems (i.e. F1, F2, F3, F4 and F7). The TTA ranked third for the rest of the test functions (F5,
F6). In addition, 92% of the p-value obtained from the Wilcoxon-signed rank test was smaller
than 0.05, as shown in Table 6. The data marked with an asterisk (*) show the equal median of
two samples or the comparison algorithm with a significant performance compared with the
TTA. The data with double asterisks (**) indicate that the comparison algorithm is better and
has significant performance comparedwith the TTA.

For the multimodal test problems, the TTA performed best in three out of six test
problems. The best TTA performance was observed in F9, F10 and F11 problems.
The TTA was behind HHO for F8 and F12. In the F13 problem, the TTA ranked
sixth behind the comparison algorithms, which was its worst performance for all
test problems. The significance of the results obtained by the TTA was supported
by statistical test, where more than 81% of the p-values were smaller than 0.05
(Table 6).

In the composite benchmark problems, few algorithms showed outstanding performance
by producing similar minimum mean fitness. In F17 and F18, 11 out of 12 metaheuristics
reached the minimum mean fitness. The results obtained by the TTA for this particular
class of problem were excellent. The TTA obtained the minimum mean in all test problems,
except for F16. For this problem, TTA was behind BOA. However, only 58% of the cases
with significant p-values are observed in Table 6. The percentage was relatively low
compared with the unimodal and multimodal classes, which was because the TTA obtained
similar mean fitness in a few problems compared with other algorithms.

Table 7 presents the count of test problems where the TTA performs better, equal or
worse when a head-to-head comparison of mean fitness is conducted. Compared with LCA,
the TTA displayed better performance in 14 test problems, whereas it exhibited in equal and
worse performance in four and one test problem, respectively.

As shown in Table 7, the TTA showed better performance in 77% of the cases compared
with the comparison algorithms. The TTA concomitantly revealed equivalent performance
in 16% cases. These numbers collectively underlined TTA and its equal performance at
least with the best metaheuristics in 93% cases. The TTA performed worse than the
comparison algorithms, especially the new metaheuristics of ASO and HHO, in the
remaining 7% cases.

Figures 5, 6 and 7 show the convergence plots for the selected unimodal, multimodal and
composite test problems, respectively. For the unimodal test problem, the algorithm kept
converging until the last segment of iterations, indicating that the TTA continuously
improved the solution through exploitation until the end. The convergence curve of the
multimodal and composite test problems showed that the TTA had a fast convergence rate.
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Results of wilcoxon
signed rank test (p-

value) for benchmark
test functions
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In most test problems, the convergence completed at the 200th iteration. This result
explained the superiorities of the TTA to obtain global optimum with a small number of
iterations.

3.3 Algorithm analyses
An additional test with only five players and 100 iterations was conducted for the selected
test problems to verify the search characteristic of the TTA. Figure 8 presents the search
history, trajectory and average fitness for the selected test problems. The player positions
for 100 iterations were marked with black marks. The solutions based on the search history
were fairly distributed in the search space during the early stage of iteration. The solutions
then moved towards the promising global optimum.

The trajectory illustrated in the third column of Figure 8 shows the value of the first
variable for the first player, indicating the change in the variable value during the iteration.
In most problems, rapid changes occur during the early stage of iteration. The changes
gradually reduce with time. In F8, F12, F16 and F17, the variable values experienced a small
fluctuation after rapid changes, indicating that the exploration of the solution continued to
occur. Figure 9 shows the percentage of exploitation and exploration in the TTA for the

Table 7.
Head-to-head
comparison of the
TTA performance

TTA performance SLO LCA GBA FGA PSO MFO ASO FDO BOA HHO PFA (%)

Better 16 14 14 16 14 16 16 14 17 10 15 77.0
Equal 3 4 3 3 4 3 3 2 1 5 3 16.3
Worse 0 1 2 0 1 0 0 3 1 4 1 6.7

Figure 5.
Convergence plot of
unimodal problems
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Figure 6.
Convergence plot of

multimodal problems

Figure 7.
Convergence plot of
composite problems
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selected benchmark functions. Population diversity was used to measure the exploration
and exploitation (Cheng et al., 2014; Salleh et al., 2018). As shown in Figure 9, the TTA
maintained the exploration and exploitation ratio at an average of 26%: 74%. These plots
clearly proved that the exploration occurred until the end of the iteration.

The average fitness measures the mean for all solutions in every iteration. The plot of
average fitness in Figure 8 provides evidence that the overall population fitness is improved
throughout the iterations. This finding showed the effectiveness of exploitation feature in
the TTA, where it improved the player position for the entire population. The convergence
rate for average fitness was consistent with Figure 7, where the TTA experienced a fast
convergence rate.

Figure 8.
Search history,
trajectory and
average fitness for
the selected problems
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4. Engineering design optimisation
In this section, TTA is implemented to optimise classical engineering design problems. In
this work, five engineering design problems with constraints are considered. The problems
are welded beam, spring, pressure vessel, gear train and three-bar designs. Apart from the
variable bounds, these problems have several inequality constraints to be fulfiled. A death
penalty approach is used to deal with these constraints. In this approach, an extremely large
penalty will be given to the fitness when any of the constraints is violated.

4.1 Welded beam design
This problem aims to design a welded beam with minimum cost (Ragsdell and Phillips, 1976).
Thewelded beam design in Figure 10 is subjected to shear stress (t ), bending stress (s ), buckling

Figure 9.
Exploration and

exploitation for the
selected problems

Figure 10.
Welded beam design
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load (Pc) and beam deflection (d ). Four design variables need to be optimised in this problem. The
variables comprise weld thickness (h), length of the bar being welded (l), bar height (t) and bar
thickness (b). For this problem, seven inequality constraints, namely g1 to g7, are found:

Minimize f Xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14:0þ x2ð Þ

Subjected to : g1 Xð Þ ¼ t Xð Þ � tmax# 0

g2 Xð Þ ¼ s Xð Þ � smax# 0

g3 Xð Þ ¼ x1 � x4# 0

g4 Xð Þ ¼ 0:10471x21 þ 0:04811x3x4 14:0þ x2ð Þ � 5:0# 0

g5 Xð Þ ¼ 0:125� x1# 0

g6 Xð Þ ¼ d Xð Þ � d max# 0

g7 Xð Þ ¼ P � Pc Xð Þ# 0

0:1# xi # 2:0; i ¼ 1; 4

0:1# xi# 10:0; i ¼ 2; 3

t Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 0ð Þ2 þ 2t 0t 00

q
; t

0 ¼ Pffiffiffi
2

p
x1x2

; t
00 ¼ MR

J
; M ¼ P Lþ x2

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
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P ¼ 6000 lb; L ¼ 14 in:; E ¼ 3� 106 psi; G ¼ 12� 106 psi

tmax ¼ 13; 600 psi; smax ¼ 30; 000 psi; d max ¼ 0:25 in:

The welded beam design problem has been solved by many optimisation algorithms in the
literature. Table 8 presents the best optimisation results of welded beam design using the TTA.
The obtained results were comparedwith the results published in various journals using different
algorithms. For this problem, the results were compared with the GA, Co-Evolutionary PSO
(CPSO), Improved ACO (IACO), MFO, GreyWolf Optimiser (GWO), Artificial Bee Colony (ABC),
WOA and MVO. The TTA performance was compared with the latest algorithms, including
Cohort Intelligent (CI), Sailfish Optimiser (SFO), HHO and Marine Predators Algorithm (MPA).
The results indicated that the TTA obtained the best solution compared with the comparison
algorithms with a fitness value of 1.695247. The result showed the superior performance of the
TTAovermajor algorithms in optimizing real problems.

4.2 Tension/compression spring design
The tension/compression spring design (Figure 11) aims to minimise the weight, subjected
to shear stress, surge frequency and minimum deflection (Coello, 2000). Three continuous
design variables, namely, wire diameter (d), mean coil diameter (D) and number of active
coils (N), are used in this problem. This problem is another popular engineering design
problem used in optimisation. Several algorithms, including GA, PSO, ABC, MFO and
Improved Harmony Search (IHS), are used in the literature to optimise this problem:

Minimize f Xð Þ ¼ x3 þ 2ð Þx2x21

Subjected to : g1 Xð Þ ¼ 1� x32x3
71785x41

# 0

Table 8.
Optimisation results

of welded beam
design

Algorithm x1 (h) x2 (l) x3 (t) x4 (b) f(X)

GA (Carlos and Coello, 2000) 0.1829 4.0483 9.3666 0.2059 1.8242
CPSO (He and Wang, 2007) 0.202369 3.544214 9.04821 0.205723 1.728024
IACO (Kaveh and Talatahari, 2010) 0.2057 3.471131 9.036683 0.205731 1.724918
MFO (Mirjalili, 2015a) 0.2057 3.4703 9.0364 0.2057 1.72452
GWO (Mirjalili et al., 2014) 0.205676 3.478377 9.03681 0.205778 1.72624
ABC (Akay and Karaboga, 2012) 0.20573 3.470489 9.036624 0.20573 1.724852
WOA (Mirjalili and Lewis, 2016) 0.205396 3.484293 9.037426 0.206276 1.730499
MVO (Mirjalili et al., 2016) 0.205463 3.473193 9.044502 0.205695 1.72645
CI (Shastri et al., 2019) 0.2057 3.4704 9.0366 0.2057 1.7248
SFO (Shadravan et al., 2019) 0.2038 3.6630 9.0506 0.2064 1.73231
HHO (Heidari et al., 2019) 0.204039 3.531061 9.027463 0.206147 1.73199057
MPA (Faramarzi et al., 2020) 0.205728 3.470509 9.036624 0.205730 1.724853
TTA 0.205727 3.253169 9.036624 0.20573 1.695247
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g2 Xð Þ ¼ 4x22 � x1x2
12566 x2x31 � x41

� �þ 1
5108x21

� 1# 0

g3 Xð Þ ¼ 1� 140:45x1
x22x3

# 0

g4 Xð Þ ¼ x1 þ x2
1:5

� 1# 0

0:05# x1# 2:00; 0:25# x2# 1:30; 2:0# x1# 15:0

Table 9 shows the optimisation results of tension/compression spring adopted from
different sources. The best fitness was obtained by the IACO algorithm with a fitness of
0.012643. The TTA together with the ABC and MPA ranked second. The three
algorithms shared a similar fitness value of 0.012665 but with different design variable
values. In this problem, the TTA outperformed major algorithms such as GA, CPSO,
IACO and MFO.

Figure 11.
Tension/compression
spring
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4.3 Pressure vessel
The pressure vessel is another popular problem in engineering design optimisation, as
displayed in Figure 12 (Sandgren, 1990). This problem aims to minimise the overall cost of the
vessel. However, the design must consider few constraints. The design variables for this
problem are shell thickness (Ts = x1), head thickness (Th = x2), inner radius (R = x3) and
cylindrical section length (L = x4). The values of x1 and x2 variables range from 0.0625 to
6.1875, with an increment of 0.0625. x3 and x4 are continuous variables ranging from 10 to 200:

Minimize f Xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x23 þ 3:1661x21x4 þ 19:84x21x3

Subjected to : g1 Xð Þ ¼ �x1 þ 0:0193x3# 0

g2 Xð Þ ¼ �x3 þ 0:00954x3# 0

g3 Xð Þ ¼ �px23x4 þ 1;296; 000# 0

g4 Xð Þ ¼ �x4 þ 240# 0

1� 0:0625# x1; x2# 99� 0:0625

Table 9.
Optimisation results

of tension/
compression spring

design

Algorithm x1 (d) x2 (D) x3 (N) f(X)

GA (Carlos and Coello, 2000) 0.05148 0.351661 11.6322 0.012705
CPSO (He and Wang, 2007) 0.051728 0.357644 11.24454 0.012675
IHS (Akay and Karaboga, 2012) 0.05115438 0.34987116 12.0764321 0.0126706
IACO (Kaveh and Talatahari, 2010) 0.051865 0.3615 11 0.012643
MFO (Mirjalili, 2015a) 0.051994 0.364109 10.86842 0.012667
GWO (Mirjalili et al., 2014) 0.05169 0.356737 11.28885 0.012666
ABC (Akay and Karaboga, 2012) 0.051749 0.358179 11.20376 0.012665
WOA (Mirjalili and Lewis, 2016) 0.051207 0.345215 12.00403 0.012676
CI (Shastri et al., 2019) 0.05157 0.35418 11.43864 0.012667
HHO (Heidari et al., 2019) 0.051796393 0.359305355 11.138859 0.012665443
MPA (Faramarzi et al., 2020) 0.051724477 0.35757003 11.2391955 0.012665
TTA 0.051669 0.356226 11.31784 0.012665

Figure 12.
Pressure vessel
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10# x3; x4# 200

As shown in the results in Table 10, the best fitness for pressure vessel (6,051.564) was
obtained by the GWO algorithm (Mirjalili et al., 2014). For this problem, the TTA
ranked second with a fitness of 6,059.714. The result obtained by the TTA was exactly
the same with MFO, CI and ABC. In this problem, x1 and x2 were treated as discrete
variables, making it incomparable with other studies that assumed x1 and x2 as
continuous variables.

4.4 Three-bar truss design
This problem consists of a planar truss with three bars, as depicted in Figure 13 and has
been introduced with the objective to minimise the volume of the truss (Gandomi et al., 2013;
Yang and Gandomi, 2012). Two design variables, namely, cross-sections of A1 (or x1) and
A2 (or x2), are involved in this problem. This problem has three nonlinear inequality
constraints:

Minimize f Xð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
*l

Table 10.
Optimisation results
of pressure vessel
design

Algorithm x1 (Ts) x2 (Th) x3 (R) x4 (L) f(X)

GA (Carlos and Coello, 2000) 0.8125 0.4345 40.3239 200 6288.745
CPSO (He and Wang, 2007) 0.8125 0.4375 42.09127 176.7465 6061.078
IACO (Kaveh and Talatahari, 2010) 0.8125 0.4375 42.09835 176.6378 6059.726
MFO (Mirjalili, 2015a) 0.8125 0.4375 42.09845 176.6366 6059.714
GWO (Mirjalili et al., 2014) 0.8125 0.4345 42.08918 176.7587 6051.564
ABC (Akay and Karaboga, 2012) 0.8125 0.4375 42.09845 176.6366 6059.714
WOA (Mirjalili and Lewis, 2016) 0.8125 0.4375 42.09827 176.639 6059.741
MVO (Mirjalili et al., 2016) 0.8125 0.4375 42.09074 176.7387 6060.807
CI (Shastri et al., 2019) 0.81249 0.4375 42.09844 176.636 6059.714
MPA (Faramarzi et al., 2020) 0.8125 0.4375 42.098445 176.636607 6059.7144
TTA 0.8125 0.4375 42.09845 176.6366 6059.714

Figure 13.
Three-bar truss
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Subjected to : g1 Xð Þ ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x21 þ 2x1x2
P � s # 0

g2 Xð Þ ¼ x2ffiffiffi
2

p
x21 þ 2x1x2

P � s # 0

g3 Xð Þ ¼ 1ffiffiffi
2

p
x2 þ x1

P � s # 0

l ¼ 100 cm; P ¼ 2 kN=cm2; s ¼ 2 kN=cm2

0# x1; x2# 1

The TTA’s performance in Table 11 was compared with MFO and MVO. The following
algorithms, including, Cuckoo Search Algorithm (CSA), Hybridised PSO with Differential
Evolution (PSO-DE), Flower Pollination Algorithm (FPA), ALO, Bat Algorithm (BA) and
HHO, were also used. The results of the three-bar truss design in Table 11 indicated that the
TTA obtained a roughly similar performance with other major algorithms. However, the
results showed that the TTA’s fitness outperformed other algorithms, except PSO-DE, when
they were closely inspected up to eight decimals. This result showed the effectiveness of the
TTA in optimising real-world problems.

4.5 Cantilever beam design
Cantilever beam design is a civil engineering problem that aims to minimise the total weight of
the beam (Gandomi et al., 2013; Yang and Gandomi, 2012). The cantilever beam consists of five
hollow square blocks with different sizes, as shown in Figure 14. The first square block is fixed
at the end of Block 1 and a vertical force (F) is applied to the end of Block 5. Five design
variables, which are the width/height of five different blocks, are used in this problem:

Minimize f Xð Þ ¼ 0:6224 x1 þ x2 þ x3 þ x4 þ x5ð Þ

Table 11.
Optimisation results

of three-bar truss
design

Algorithm x1 x2 f(X)

MFO (Mirjalili, 2015a) 0.788245 0.409467 263.89597972
CSA (Gandomi et al., 2013) 0.78867 0.40902 263.97156204
MVO (Mirjalili et al., 2016) 0.788603 0.408453 263.89585070
PSO-DE (Liu et al., 2010) 0.788675 0.408248 263.89584337
FPA (Nigdeli et al., 2016) 0.78853 0.40866 263.89596407
ALO (Mirjalili, 2015b) 0.788663 0.408283 263.89584351
BA (Yang and Gandomi, 2012) 0.78863 0.40838 263.89624833
SFO (Shadravan et al., 2019) 0.7884562 0.40886831 263.89592128
HHO (Heidari et al., 2019) 0.788662816 0.408283133832900 263.89584348
TTA 0.7886711002 0.4082597017 263.89584340
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Subjected to : g Xð Þ ¼ 61
x31

þ 27
x32

þ 19
x33

þ 7
x34

þ 1
x35

� 1# 0

0:01# x1; x2; x3; x4; x5# 100

The results of cantilever beam design optimisation are presented in Table 12. As shown in
the best fitness in the last column, the TTA result clearly outperformed all other algorithms,
including the latest algorithm, Social Mimic Optimisation (SMO) (Balochian and Baloochian,
2019) with a fitness value of 1.30326. The results of engineering design problems clearly
indicated the ability of the TTA to optimise real-world problems with constraints, including
the discrete parameter in the pressure vessel problem. The remarkable TTA performance
obtained in the welded beam and cantilever designs explained the superiority of the
proposed algorithm.

5. Discussions and conclusions
This study presented a novel metaheuristic inspired by a football-playing style known as
tiki-taka. The tiki-taka style is associated with short passing, player positioning and
possession maintaining. The proposed TTA adopted the short passing and player

Figure 14.
Cantilever beam

Table 12.
Optimisation results
of cantilever beam
design

Algorithm x1 x2 x3 x4 x5 f(X)

MFO (Mirjalili, 2015a) 5.984872 5.316727 4.497333 3.513616 2.16162 1.339988086
MVO (Mirjalili et al., 2016) 6.02394 5.306011 4.495011 3.496022 2.152726 1.3399595
ALO (Mirjalili, 2015b) 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995
FPA (Nigdeli et al., 2016) 6.0202 5.3082 4.5042 3.4856 2.1557 1.33997
LAPO (Nematollahi et al., 2017) 6.012436 5.314871 4.495914 3.499394 2.151155 1.336521415
CSA (Gandomi et al., 2013) 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SMO (Balochian and Baloochian,
2019)

5.786916565.0516929654.2276901613.739055332.257392701.31095

TTA 5.969892 4.869666 4.474679 3.4855 2.139488 1.30326
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positioning characteristics during optimisation. Compared with existing football-inspired
algorithms, this algorithm is the first to mimic football tactics in its model.

The results of unimodal benchmark functions where the TTA performed best in five out
of seven problems showed that the TTA had a remarkable exploitation ability. The player
updating procedure characterised by short passing to a nearby player is a good strategy to
collect information from all candidate solutions. In the multimodal problem, the TTA
maintained its performance in the top three ranks in five out of six benchmark functions.
These results explained the exploration capability of the TTA. The results showed the
exploration and local optimum avoidance capabilities of the TTA because multimodal
problems consisted of hundreds of local optima. The effective exploration capability of the
TTA relied on multiple key players as leaders and the ball losing mechanism in the
algorithm. The best TTA performance is found in the composite benchmark functions with
five problems and ranks second in one problem. The results substantiated the TTA’s
capability to balance between exploitation and exploration in solving real-world problems.

The head-to-head comparison explained the capability of the TTA to maintain its
performance at different difficulty levels. The percentage of TTA cases with better and equal
performance sufficiently justified its superiority compared with well-established, highly cited
and recent metaheuristics. Subsequent analysis on the characteristic of TTA revealed that this
algorithm maintained the population diversity throughout the optimisation. At the same time,
the proposed algorithm maintained the exploration and exploitation ratio at 26%:74%. The
results of engineering design problem justified the capability of the TTA to optimise real-life
problems with multiple constraints. Although a simple constraint handling approach (i.e. death
penalty) was used, the proposed algorithm found the best solution in three problems and
ranked second in the two remaining problems. The obtained results in benchmark functions
and engineering designs problem clearly explained the superiority of the TTA.

The uniqueness of TTA depends on short passing strategy in the player position updating
mechanism. In comparison with other metaheuristics, the TTA exploits the nearby solution in
addition to a set of leading solutions (key players) to determine the next solution position. This
feature makes every single solution contributes to the exploitation of other solutions. At the
same time, this strategy allows the proposed algorithm to maintain the diversity because the
influence of the nearby solution is higher than the leading solutions. The unsuccessful pass
concept promotes the exploration in the search space. The ball with unsuccessful pass will be
delivered away from original position to explore the new region.

Although the TTA exhibited exceptional performance, this algorithm had few
limitations, as observed from the computational experiments. The first drawback is that the
TTA’s performance easily drops with the change in the coefficient. The experimental results
using Taguchi design show that the changes in coefficient level significantly contribute to
the overall algorithm performance. In future applications, the optimum coefficient value
should be identified for a specific problem before making a decision. The second limitation is
the exploration mechanism, namely, the unsuccessful ball pass, of the proposed algorithm.
The ball will be reflected behind the player’s team when an unsuccessful pass occurs. This
strategy makes the exploration activity to concentrate on a particular region in the search
space. The overall TTA’s performance can be enhanced with an improved strategy to
ensure the exploration can be evenly distributed.

References
Abdel-Basset, M., Abdel-Fatah, L., (2018), and., and Sangaiah, A.K. “Metaheuristic algorithms: a comprehensive

review”, in Computational Intelligence for Multimedia Big Data on the Cloud with Engineering
Applications, Sangaiah,A. K., Sheng,M. andZhang, Z., (Eds), Academic Press, pp. 185-231.

Tiki-taka
algorithm



Abdullah, J.M. and Ahmed, T. (2019), “Fitness dependent optimizer: inspired by the bee swarming
reproductive process”, IEEE Access, Vol. 7, pp. 43473-43486, doi: 10.1109/ACCESS.2019.2907012.

Akay, B. and Karaboga, D. (2012), “Artificial bee colony algorithm for large-scale problems and
engineering design optimization”, Journal of Intelligent Manufacturing, Vol. 23 No. 4,
pp. 1001-1014, doi: 10.1007/s10845-010-0393-4.

Akçay, Y., Li, H. and Xu, S.H. (2006), “Greedy algorithm for the general multidimensional knapsack
problem”,Annals of Operations Research, Vol. 150 No. 1, pp. 17, doi: 10.1007/s10479-006-0150-4.

Arora, S. and Singh, S. (2019), “Butterfly optimization algorithm: a novel approach for global
optimization”, Soft Computing, Vol. 23 No. 3, pp. 715-734, doi: 10.1007/s00500-018-3102-4.

Balochian, S. and Baloochian, H. (2019), “Social mimic optimization algorithm and engineering applications”,
Expert SystemswithApplications, Vol. 134, pp. 178-191, doi: 10.1016/j.eswa.2019.05.035.

Carlos, A. and Coello, C. (2000), “Constraint-handling using an evolutionary multiobjective optimization
technique”, Civil Engineering Systems, Vol. 17 No. 4, pp. 319-346, doi: 10.1080/02630250008970288.

Cheng, S., Shi, Y., Qin, Q., Zhang, Q. and Bai, R. (2014), “Population diversity maintenance in brain
storm optimization algorithm”, Journal of Artificial Intelligence and Soft Computing Research,
Vol. 4 No. 2, pp. 83-97.

Coello, C.A.C. (2000), “Use of a self-adaptive penalty approach for engineering optimization problems”,
Computers in Industry, Vol. 41 No. 2, pp. 113-127, doi: 10.1016/S0166-3615(99)00046-9.

Dhiman, G. and Kumar, V. (2017), “Spotted hyena optimizer: a novel bio-inspired based metaheuristic
technique for engineering applications”, Advances in Engineering Software, Vol. 114, pp. 48-70,
doi: 10.1016/j.advengsoft.2017.05.014.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T. and Cosar, A. (2019), “A survey on new generation metaheuristic
algorithms”,Computers and Industrial Engineering, Vol. 137, pp. 106040, doi: 10.1016/j.cie.2019.106040.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996), “The ant system: optimization by a colony of cooperating
agents”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 26 No. 1,
pp. 1-13.

Fadakar, E. and Ebrahimi, M. (2016), “A new metaheuristic football game inspired algorithm”, in 2016
1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), pp. 6-11, doi:
10.1109/CSIEC.2016.7482120.

Faramarzi, A., Heidarinejad, M., Mirjalili, S. and Gandomi, A.H. (2020), “Marine predators algorithm: a
nature-inspired metaheuristic”, Expert Systems with Applications, Vol. 152, pp. 113377, doi:
10.1016/j.eswa.2020.113377.

Gandomi, A.H., Yang, X.-S. and Alavi, A.H. (2013), “Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems”, Engineering with Computers, Vol. 29 No. 1, pp. 17-35,
doi: 10.1007/s00366-011-0241-y.

Hatamzadeh, P. and Khayyambashi, M.R. (2012), “Football optimization: an algorithm for optimization
inspired by football game”, in 11th Intelligent Systems Conference, Kharazmi University:
Tehran, p. 261.

Hayward, B. (2015), “The evolution of barcelona’s tiki taka”, available at: www.goal.com/en/news/12/
spanish-football/2015/09/29/15804882/the-evolution-of-barcelonas-tiki-taka (accessed 27May 2019).

He, Q. and Wang, L. (2007), “An effective co-evolutionary particle swarm optimization for constrained
engineering design problems”, Engineering Applications of Artificial Intelligence, Vol. 20 No. 1,
pp. 89-99, doi: 10.1016/J.ENGAPPAI.2006.03.003.

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen, H. (2019), “Harris hawks
optimization: algorithm and applications”, Future Generation Computer Systems, Vol. 97,
pp. 849-872, doi: 10.1016/j.future.2019.02.028.

Jaddi, N.S., Alvankarian, J. and Abdullah, S. (2017), “Kidney-inspired algorithm for optimization
problems”, Communications in Nonlinear Science and Numerical Simulation, Vol. 42,
pp. 358-369, doi: 10.1016/j.cnsns.2016.06.006.

EC

http://dx.doi.org/10.1109/ACCESS.2019.2907012
http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1007/s10479-006-0150-4
http://dx.doi.org/10.1007/s00500-018-3102-4
http://dx.doi.org/10.1016/j.eswa.2019.05.035
http://dx.doi.org/10.1080/02630250008970288
http://dx.doi.org/10.1016/S0166-3615(99)00046-9
http://dx.doi.org/10.1016/j.advengsoft.2017.05.014
http://dx.doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1109/CSIEC.2016.7482120
http://dx.doi.org/10.1016/j.eswa.2020.113377
http://dx.doi.org/10.1007/s00366-011-0241-y
http://www.goal.com/en/news/12/spanish-football/2015/09/29/15804882/the-evolution-of-barcelonas-tiki-taka
http://www.goal.com/en/news/12/spanish-football/2015/09/29/15804882/the-evolution-of-barcelonas-tiki-taka
http://dx.doi.org/10.1016/J.ENGAPPAI.2006.03.003
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.cnsns.2016.06.006


Jain, M., Singh, V. and Rani, A. (2019), “A novel nature-inspired algorithm for optimization: Squirrel
search algorithm”, Swarm and Evolutionary Computation, Vol. 44, pp. 148-175, doi: 10.1016/j.
swevo.2018.02.013.

Kashan, A.H. (2009), “League championship algorithm: a new algorithm for numerical function
optimization”, in 2009 International Conference of Soft Computing and Pattern Recognition,
pp. 43-48, 10.1109/SoCPaR.2009.21.

Kaveh, A. and Bakhshpoori, T. (2016), “Water evaporation optimization: a novel physically inspired
optimization algorithm”, Computers and Structures, Vol. 167, pp. 69-85, doi: 10.1016/j.
compstruc.2016.01.008.

Kaveh, A. and Dadras, A. (2017), “A novel Meta-heuristic optimization algorithm: thermal exchange
optimization”, Advances in Engineering Software, Vol. 110, pp. 69-84, doi: 10.1016/j.
advengsoft.2017.03.014.

Kaveh, A. and Talatahari, S. (2010), “An improved ant colony optimization for constrained engineering
design problems”, Engineering Computations, Vol. 27 No. 1, pp. 155-182, doi: 10.1108/
02644401011008577.

Kennedy, J. and Eberhart, R. (1995), “Particle swarm optimization”, in Proceedings of International
Conference on Neural Networks, Vol. 4, pp. 1942-1948, 10.1109/ICNN.1995.488968.

Khaji, E. (2014), “Soccer league optimization: a heuristic algorithm inspired by the football system in
European countries”, in 3rd Recent Inovations Conference on Industrial Engineering and
Mechanical Engineering, p. 82.

Li, M.D., Zhao, H., Weng, X.W. and Han, T. (2016), “A novel nature-inspired algorithm for optimization:
virus colony search”, Advances in Engineering Software, Vol. 92, pp. 65-88, doi: 10.1016/j.
advengsoft.2015.11.004.

Liang, J.-J., Suganthan, P.N. and Deb, K. (2005), “Novel composition test functions for numerical global
optimization”, in Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005,
pp. 68-75.

Liu, H., Cai, Z. and Wang, Y. (2010), “Hybridizing particle swarm optimization with differential
evolution for constrained numerical and engineering optimization”, Applied Soft Computing,
Vol. 10 No. 2, pp. 629-640, doi: 10.1016/j.asoc.2009.08.031.

Meng, X.-B., Gao, X.Z., Lu, L., Liu, Y. and Zhang, H. (2016), “A new bio-inspired optimisation algorithm:
bird swarm algorithm”, Journal of Experimental and Theoretical Artificial Intelligence, Vol. 28
No. 4, pp. 673-687, doi: 10.1080/0952813X.2015.1042530.

Mirjalili, S. (2015a), “Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm”,
Knowledge-Based Systems, Vol. 89, pp. 228-249, doi: 10.1016/j.knosys.2015.07.006.

Mirjalili, S. (2015b), “The ant lion optimizer”, Advances in Engineering Software, Vol. 83, pp. 80-98, doi:
10.1016/j.advengsoft.2015.01.010.

Mirjalili, S. (2016), “Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems”, Neural Computing and Applications,
Vol. 27 No. 4, pp. 1053-1073, doi: 10.1007/s00521-015-1920-1.

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), “Salp swarm
algorithm: a bio-inspired optimizer for engineering design problems”, Advances in Engineering
Software, Vol. 114, pp. 163-191, 10.1016/j.advengsoft.2017.07.002.

Mirjalili, S. and Lewis, A. (2016), “The whale optimization algorithm”, Advances in Engineering
Software, Vol. 95, pp. 51-67, doi: 10.1016/j.advengsoft.2016.01.008.

Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), “Multi-verse optimizer: a nature-inspired algorithm
for global optimization”, Neural Computing and Applications, Vol. 27 No. 2, pp. 495-513, doi:
10.1007/s00521-015-1870-7.

Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), “Grey wolf optimizer”, Advances in Engineering
Software, Vol. 69, pp. 46-61, doi: 10.1016/j.advengsoft.2013.12.007.

Tiki-taka
algorithm

http://dx.doi.org/10.1016/j.swevo.2018.02.013
http://dx.doi.org/10.1016/j.swevo.2018.02.013
http://dx.doi.org/10.1109/SoCPaR.2009.21
http://dx.doi.org/10.1016/j.compstruc.2016.01.008
http://dx.doi.org/10.1016/j.compstruc.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1016/j.advengsoft.2017.03.014
http://dx.doi.org/10.1108/02644401011008577
http://dx.doi.org/10.1108/02644401011008577
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.advengsoft.2015.11.004
http://dx.doi.org/10.1016/j.advengsoft.2015.11.004
http://dx.doi.org/10.1016/j.asoc.2009.08.031
http://dx.doi.org/10.1080/0952813X.2015.1042530
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007


Nematollahi, A.F., Rahiminejad, A. and Vahidi, B. (2017), “A novel physical based Meta-heuristic
optimization method known as lightning attachment procedure optimization”, Applied Soft
Computing, Vol. 59, pp. 596-621, doi: 10.1016/j.asoc.2017.06.033.

Nigdeli, S.M., Bekdacs, G., (2016), and., and Yang, X.-S. “Application of the flower pollination algorithm
in structural engineering”, ” inMetaheuristics and Optimization in Civil Engineering, Yang, X.-S.,
Bekda\cs, G. and Nigdeli, S. M., (Eds), Springer International Publishing, Cham, pp. 25-42.

O. Maciel, C., Cuevas, E., Navarro, M.A., Zaldívar, D. and Hinojosa, S. (2020), “Side-Blotched lizard algorithm: a
polymorphic population approach”,Appl. Soft Comput. J, Vol. 88, doi: 10.1016/j.asoc.2019.106039.

Osaba, E., Diaz, F., (2013), and and Onieva, E. “A novel Meta-heuristic based on soccer concepts to solve
routing problems”, in Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, pp. 1743-1744, 10.1145/2464576.2480776.

Patel, V.K. and Savsani, V.J. (2015), “Heat transfer search (HTS): a novel optimization algorithm”,
Information Sciences, Vol. 324, pp. 217-246, doi: 10.1016/j.ins.2015.06.044.

Purnomo, H.D. and Wee, H.-M. (2013), “Soccer game optimization: an innovative integration of
evolutionary algorithm and swarm intelligence algorithm”, ” in Meta-Heuristics Optimization
Algorithms in Engineering, Business, Economics, and Finance, IGI Global, pp. 386-420.

Ragsdell, K.M. and Phillips, D.T. (1976), “Optimal design of a class of welded structures using
geometric programming”, Journal of Engineering for Industry, Vol. 98 No. 3, pp. 1021-1025.

Razmjooy, N., Khalilpour, M. and Ramezani, M. (2016), “A new Meta-Heuristic optimization algorithm
inspired by FIFA world cup competitions: theory and its application in PID designing for AVR
system”, Journal of Control, Automation and Electrical Systems, Vol. 27 No. 4, pp. 419-440, doi:
10.1007/s40313-016-0242-6.

Salleh, M.N.M., Hussain, K., Cheng, S., Shi, Y., Muhammad, A., Ullah, G. and Naseem, R. (2018),
“Exploration and exploitation measurement in swarm-based metaheuristic algorithms: an
empirical analysis”, in International Conference on Soft Computing and DataMining, pp. 24-32.

Sandgren, E. (1990), “Nonlinear integer and discrete programming in mechanical design optimization”,
Journal of Mechanical Design, Vol. 112 No. 2, pp. 223-229.

Saremi, S., Mirjalili, S. and Lewis, A. (2017), “Grasshopper optimisation algorithm: theory and application”,
Advances in Engineering Software, Vol. 105, pp. 30-47, doi: 10.1016/j.advengsoft.2017.01.004.

Shadravan, S., Naji, H.R. and Bardsiri, V.K. (2019), “The sailfish optimizer: a novel nature-inspired
metaheuristic algorithm for solving constrained engineering optimization problems”, Engineering
Applications of Artificial Intelligence, Vol. 80, pp. 20-34, doi: 10.1016/j.engappai.2019.01.001.

Shams, M., Rashedi, E., Dashti, S.M. and Hakimi, A. (2017), “Ideal gas optimization algorithm”,
International Journal of Artificial Intelligence, Vol. 15 No. 2, pp. 116-130.

Shareef, H., Ibrahim, A.A. and Mutlag, A.H. (2015), “Lightning search algorithm”, Applied Soft
Computing, Vol. 36, pp. 315-333, doi: 10.1016/j.asoc.2015.07.028.

Shastri, A.S., Horat, E.V., Kulkarni, A.J. and Jadhav, P.S. (2019), “Optimization of constrained
engineering design problems using cohort intelligence method”, in Proceedings of the 2nd
International Conference on Data Engineering and Communication Technology, 2019, pp. 1-11.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A. and Tiwari, S. (2005), “Problem
definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization”,KanGAL Rep,

Wang, G.-G., Deb, S., Gao, X.-Z. and Dos Santos Coelho, L. (2016), “A new metaheuristic optimisation
algorithm motivated by elephant herding behaviour”, International Journal of Bio-Inspired
Computation, Vol. 8 No. 6, pp. 394-409, doi: 10.1504/IJBIC.2016.081335.

Yang, X. and Gandomi, A.H. (2012), “Bat algorithm: a novel approach for global engineering optimization”,
Engineering Computations, Vol. 29 No. 5, pp. 464-483, doi: 10.1108/02644401211235834.

Yapici, H. and Cetinkaya, N. (2019), “A new Meta-heuristic optimizer: pathfinder algorithm”, Applied
Soft Computing, Vol. 78, pp. 545-568, doi: 10.1016/j.asoc.2019.03.012.

EC

http://dx.doi.org/10.1016/j.asoc.2017.06.033
http://dx.doi.org/10.1016/j.asoc.2019.106039
http://dx.doi.org/10.1145/2464576.2480776
http://dx.doi.org/10.1016/j.ins.2015.06.044
http://dx.doi.org/10.1007/s40313-016-0242-6
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.engappai.2019.01.001
http://dx.doi.org/10.1016/j.asoc.2015.07.028
http://dx.doi.org/10.1504/IJBIC.2016.081335
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1016/j.asoc.2019.03.012


Yazdani, M. and Jolai, F. (2016), “Lion optimization algorithm (LOA): a nature-inspired metaheuristic
algorithm”, Journal of Computational Design and Engineering, Vol. 3 No. 1, pp. 24-36, doi: 10.1016/j.
jcde.2015.06.003.

Yu, J.J.Q. and Li, V.O.K. (2015), “A social spider algorithm for global optimization”, Applied Soft
Computing, Vol. 30, pp. 614-627, doi: 10.1016/j.asoc.2015.02.014.

Zaeimi, M. and Ghoddosian, A. (2020), “Color harmony algorithm: an art-inspired metaheuristic for
mathematical function optimization”, Soft Comput, doi: 10.1007/s00500-019-04646-4.

Zhao, W., Wang, L. and Zhang, Z. (2019), “Atom search optimization and its application to solve a
hydrogeologic parameter estimation problem”, Knowledge-Based Systems, Vol. 163, pp. 283-304,
doi: 10.1016/j.knosys.2018.08.030.

Zheng, Y.-J. (2015), “Water wave optimization: a new nature-inspired metaheuristic”, Computers and
Operations Research, Vol. 55, pp. 1-11, doi: 10.1016/j.cor.2014.10.008.

About the author
Mohd Fadzil Faisae Ab. Rashid received PhD from Cranfield University, UK in 2013. He was
awarded scholarships to pursue Master and Doctoral degrees from Malaysian Government.
Currently, he is an Associate Professor in College of Engineering, Universiti Malaysia Pahang. He is
also a Chartered Engineer under the Institution of Mechanical Engineers. His research interests are in
engineering optimisation, particularly focus on manufacturing system, metaheuristics and discrete
event simulation techniques. Mohd Fadzil Faisae Ab. Rashid can be contacted at: ffaisae@ump.edu.
my

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Tiki-taka
algorithm

http://dx.doi.org/10.1016/j.jcde.2015.06.003
http://dx.doi.org/10.1016/j.jcde.2015.06.003
http://dx.doi.org/10.1016/j.asoc.2015.02.014
http://dx.doi.org/10.1007/s00500-019-04646-4
http://dx.doi.org/10.1016/j.knosys.2018.08.030
http://dx.doi.org/10.1016/j.cor.2014.10.008
mailto:ffaisae@ump.edu.my
mailto:ffaisae@ump.edu.my

	Tiki-taka algorithm: a novel metaheuristic inspired by football playing style
	1. Introduction
	2. Tiki-taka algorithm
	2.1 Inspiration
	2.2 Mathematical formulation
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



	3. Results and discussion
	3.1 Effects of tiki-taka algorithm parameters
	3.2 Comparison of performance
	3.3 Algorithm analyses

	4. Engineering design optimisation
	4.1 Welded beam design
	4.2 Tension/compression spring design
	4.3 Pressure vessel
	4.4 Three-bar truss design
	4.5 Cantilever beam design

	5. Discussions and conclusions
	References


